Paul Drude Institute for Solid State Electronics

The Paul-Drude-Institut für Festkörperelektronik (PDI) is a research institute in Berlin, Germany. We perform basic and applied research at the nexus of materials science, condensed matter physics, and device engineering. The institute is part of the Forschungsverbund Berlin and a member of the Leibniz Association.

At PDI, we focus on the fabrication and analysis of nanomaterials for semiconductor technology. Since our foundation in 1992, we have been dedicated to the advancement of materials science, particularly in the development and application of molecular beam epitaxy (MBE). We have the expertise and facilities in-house to manage the entire process from growth of materials, to microstructural characterization, spectroscopic analysis, and theoretical modeling. PDI works closely with partners from science, industry and academia, and actively engages in the transfer of knowledge and technologies to the public. The institute is committed to advancing science through the training and education of young researchers.

Cavendish Laboratory

For 150 years, the Cavendish Laboratory has been at the forefront of scientific discovery. Our researchers work at the frontier of physics, from experimental and theoretical through to applied physics in biology, biomedicine and the life sciences, and the physics of sustainability.
The core of the Laboratory’s programme has been, and continues to be, experimental physics, supported by excellence in theory. Much of our research and teaching has been driven by the desire to understand physics at its most basic level and to answer many of the ‘big questions’ in physics.

Read More
We work across ten key research themes: Astrophysics, Physics of Soft Matter and NanoSystems, Energy Materials, Applied Quantum Physics and Devices, Physics of Life, High Energy Physics, Theory of Condensed Matter, Synthetic Quantum Systems, Fundamental Physics of Quantum Matter and Quantum Information and Control.
These fields encompass a variety of research groups, eachin with its own scientific aims and ambitions but united by two common goals:
– the search for a fundamental understanding of the Universe and the laws that govern it
– seeking new ways to apply the laws of nature.

Leibniz Institute for Immunotherapy (LIT)

The Leibniz Institute for Immunotherapy (LIT) develops innovative therapies for the treatment of cancer, autoimmunity, and chronic inflammation. By reprogramming immune cells through synthetic and pharmacologic intervention, we build cells that save lives.

Our scientific activities are structured into three Research Areas: Discovery, Translation, and Clinical Application. All three work in synergy with one another. Our work starts with basic research into the areas of immune regulation, immune metabolism, cancer, and tissue homeostasis. It carries on with a focus on therapy development—spanning the creation of new formats of genetic and pharmacologic cell manipulation and drug-compliant manufacturing processes. Finally, we seek to apply our discoveries in early clinical trials on patients themselves.

Read More
Discovery: This branch of research investigates the highly complex interactions of different immune cells—with each other and with the organism’s cells—to understand how the immune system maintains the health of the organism.
Translation: This area focuses specifically on the preclinical development of immune-cell therapeutics. This includes the identification, differentiation, expansion, and preclinical testing of therapeutically relevant immune cell populations.
Clinical Application: At the LIT, our core focus is on the clinical translation of scientific findings: We therefore place significant emphasis on the development and roll out of clinical trials and focus on the clinical implementation of the results.


Reinforcing under-utilised crops at the Portuguese living lab GPeaPort – The DIVINFOOD project

In Europe, an increasing number of consumers are embracing plant-based diets and reducing meat consumption. A 2021 survey found that around 30% of Europeans follow a flexitarian diet, focused on plant-base foods with occasional meat consumption. This dietary trend underscores the demand for improved, minimally processed, and nutrient-rich alternatives.
The DIVINFOOD project aims to develop food chains that value under-utilised agrobiodiversity, in order to act against the decline of biodiversity and meet the growing expectations of consumers for healthy, local products that contribute to sustainable food systems. DIVINFOOD operates holistically across the food chain, fostering collaboration among researchers, farmers, processors, market intermediaries, and consumers, to maximize cereals and legumes food chains, realizing their potential for diversified and healthy diets.

Read More
Funded under the European Commission Horizon 2020 Sustainable Food Security call, DIVINFOOD boasts a consortium of 25 European institutions led by the Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, in France, with four Portuguese partners: ITQB NOVA, Évora University, ADECA and Cooking lab. In Portugal, the project focuses on grass pea (Lathyrus sativus).
Carlota Vaz Patto coordinates the ITQB NOVA team engaged in DIVINFOOD, specifically the PlantX Lab. With a history of participatory research with local grass pea farmers in Alvaiázere, Portugal, the team has expanded its scope under DIVINFOOD to include a wider range of farmers and processors, establishing the Portuguese living lab, GPeaPort, under her coordination. Living labs are user-centric innovation systems that foster co-creation, integrating research and innovation within community contexts. GPeaPort aims to revitalize and value grass pea cultivation and use by enhancing varietal diversity and developing innovative food products with local food producers, consumers, chefs, cooks, small-scale processors, rural development associations, local authorities and researchers, using a citizen science approach.
At ITQB NOVA, the Genetics and Genomics of Plant Complex Traits (PlantX) Laboratory, led by Carlota Vaz Patto, specializes in molecular quantitative genetics applied to plant breeding. The lab focuses on identifying genes controlling complex interesting traits, such as disease/drought resistance or seed quality, to develop control models, scientific methods and molecular tools to assist precision breeding programs. Within the scope of DIVINFOOD, PlantX hopes to contribute to the diversification of grass pea production systems, through the improvement of its traditional varieties – boosting tolerance to drought, enhancing nutritional quality, and increasing production capacity. They hope to contribute, in collaboration with other Portuguese stakeholders, to diversify diets, by facilitating the implementation of alternative mild processing methods to obtain innovative food products.

MARUM – Center for Marine Environmental Sciences

MARUM produces fundamental scientific knowledge about the role of the ocean and the ocean floor in the total Earth system. The dynamics of the ocean and the ocean floor significantly impact the entire Earth system through the interaction of geological, physical, biological and chemical processes. These influence both the climate and the global carbon cycle, and create unique biological systems.

MARUM is committed to fundamental and unbiased research in the interests of society and the marine environment, and in accordance with the Sustainable Development Goals of the United Nations. It publishes its quality-assured scientific data and makes it publicly available. MARUM informs the public about new discoveries in the marine environment and provides practical knowledge through its dialogue with society. MARUM cooperates with commercial and industrial partners in accordance with its goal of protecting the marine environment.

Music Technology Group (MTG)

The Music Technology Group (MTG) of the Pompeu Fabra University (UPF) is an internationally recognized research group with 30 years of experience. The group is part of the Department of Information and Communications Technologies, and its research is especially active in topics such as audio signal processing, musical information retrieval, musical interfaces, and computational musicology. The group has extensive experience in research projects both nationally and internationally, and actively works in collaboration with industry. Some technology transfer success stories include Vocaloid, a singing voice synthesiser developed with Yamaha which gained great popularity around the world thanks to the virtual singer Hatsune Miku, and the commercial exploitation of the interactive instrument Reactable, developed at the MTG and used by many popular bands such as Bjork or Coldplay.

Read More
The Music Technology Group (MTG) of the Pompeu Fabra University (UPF) is an internationally recognized research group with 30 years of experience. The group is part of the Department of Information and Communications Technologies, and its research is especially active in topics such as audio signal processing, musical information retrieval, musical interfaces, and computational musicology. The group has extensive experience in research projects both nationally and internationally, and actively works in collaboration with industry. Some technology transfer success stories include Vocaloid, a singing voice synthesiser developed with Yamaha which gained great popularity around the world thanks to the virtual singer Hatsune Miku, and the commercial exploitation of the interactive instrument Reactable, developed at the MTG and used by many popular bands such as Bjork or Coldplay.
In the last years the research team has been involved in some projects related to Artificial intelligence (AI) and its impact in the processes of creating, disseminating, learning and listening to music. The MTG has recently launched a Chair on AI & Music focused on the ethical and social implications of AI in the music sector.
AI has been heralded as a transformative force within the music sector, promising unparalleled opportunities to amplify creativity, accessibility, and efficiency. However, amidst this promise, concerns have arisen from most of the established stakeholders regarding the risks it poses, particularly for artists, prompting calls for robust public regulations. This has triggered an unprecedented public debate in which ethical concerns are taking center stage, underscoring the need for creating AI technologies founded on strong ethical principles.
We should make sure that AI technologies can assist all the music sector stakeholders on their diverse tasks, while placing artists/musicians at the center. Large AI models should aim to capture the essence of music understanding and they should be able to solve specific problems by fine-tuning them. These large AI models should be trained on huge amounts of diverse multimodal music data and their outputs should capture the complex relationships that make up music. The fine-tuned models should support specific tasks related to the creation, production, distribution, access, analysis, or enjoyment of music.

State Museum of Natural History Stuttgart

The aim of SMNS research is to comprehensively understand changes in biodiversity at all levels – from genetic diversity to the diversity of species and communities to the level of ecosystems – over geological timescales. SMNS investigates how the diversity of organisms, species communities and interactions has developed in the course of evolution, discerning patterns of change over time and which biotic and abiotic environmental drivers are responsible for this. The SMNS investigates both evolutionary and anthropogenic influences on biodiversity across different temporal and spatial scales.

Read More
Our expertise encompasses a wide variety of organisms, from charismatic Indonesian tarsiers under threat of extinction to thermophilic neophytes that have spread rapidly and conquered new habitats in the past decades in response to rising temperatures. From giant fossil marine reptiles that were dreaded top predators of the Jurassic Sea to millimeter-sized parasitoid wasps that lay their eggs in other insect larvae, preventing agricultural pests. With more than 12 million specimens in our collection and cutting-edge facilities, we investigate this diversity to unravel the uniqueness of each specimen. It is the fascinating stories behind each specimen that we convey not only in scientific articles but also to our visitors in the exhibition. Be it the first evidence of cancer from 240 million years ago, the predation among giant marine reptiles, as evidenced by bite marks or how the evolution of mouthparts contributed to the diversity we see in some hyperdiverse insect groups.
Through close collaborations, such as with the particle accelerator at KIT, we are able to use synchrotron radiation to create three-dimensional models of insects trapped in amber millions of years ago or visualize the behavior of live parasitoid wasps moving in their host.
We regularly carry out expeditions and paleontological excavations. Both in the vicinity, where many world-famous fossil deposits are easily accessible and also worldwide, with many highly important findings. They range from small, such as the oldest fossil hummingbird to the probably heaviest animal that ever lived on earth: Perucetus colossus. Our scientists describe new species from the meadows and forests in the area where most people would not expect to find the unknown. But also from remote areas such as cave systems across Europe, tropical rainforests or the islands of New Caledonia. We do this together with institutions and researchers from the area and maintain close collaborations that allow for capacity building and vice versa knowledge exchange on an eye level. We are active members in several networks, through which we are able to join forces with other natural history museums, universities and research institutions of all kinds to conduct large-scale projects, such as the German Barcode of Life.

Science and Research Centre Koper – A Hub of Mediterranean Wisdom

The Science and Research Centre Koper (ZRS Koper) works on an interdisciplinary basis, involving humanities, social and natural sciences, with special emphasis given to the research in the specific environments of the Mediterranean and the upper Adriatic region.

Read More
The main activities are:
– basic and applied research, production of professional expertise and counseling, education, organisation of scientific meetings, publishing and editorial activities, librarianship .

ZRS Koper is actively integrating in international scientific cooperation and is connecting with many similar organisations worldwide.

Researchers are also actively involved in academic process at all three Slovene public universities, thus ensuring the transfer of research results into the educational sphere.

History of ZRS Koper
The Science and Research Centre of the Republic of Slovenia, Koper (ZRS Koper) was founded on the 1st December 1994 by the Government of the Republic of Slovenia as well as the community of coastal municipalities (as legal successor of all three coastal municipalities: Koper City Municipality, Izola Municipality and Piran Municipality) and the Slovenian Academy of Sciences and Arts.
During the years 2003 to 2015 ZRS Koper acted as a member of the University of Primorska and was it’s main research hub. Nine ZRS Koper institutes carried out an enviable job, many internationally recognized researchers have enabled the transfer of knowledge to dozens of study programs.
Aiming for responsible design of its own future, the ZRS Koper researchers strive for a new form of organization. Following the decision of the Government of the Republic of Slovenia, a public research institute, the Science and Research Centre Koper was established on 26 November 2016.

Institut d’Études Européennes

For over 60 years, the Institut d’études européennes at the Université libre de Bruxelles (IEE-ULB) has been a leading centre for research, debate, and collaboration on European integration, institutions, and policies. Situated in Brussels, in proximity to EU institutions and involved in different policy and research networks, the IEE-ULB provides a dynamic environment for scholars, professionals, and journalists to engage with critical European issues.

Read more
IEE-ULB’s research agenda is structured around four key thematic axes that reflect the evolving challenges of European governance. The first explores Europe as an Area of Freedom, Security, and Justice , addressing issues such as the rule of law, migration, and security. The second focuses on Europe as an Area of Economic and Social Regulation , investigating economic governance, territories and regional policy, common market and social issues. The third crosscutting axe examines Europe as a Community of Norms and Values , analyzing questions of cooperation processes, processes of identification and conflict generated by European integration and their role in the legitimization of the EU as a political entity. Finally, the fourth theme, Europe in the World, assesses the EU’s global role, its relations with neighbouring regions, and its place in international governance.

Beyond academic research, the IEE is actively developing a multi-year programme on how Europe is narrated through different perspectives, including media and journalism. This initiative aims to strengthen the ability of students and researchers to critically assess information, data, and media sources while fostering interdisciplinary dialogue and exchange of views of the social sciences and journalism on the different ways in which facts and news on European affairs are constructed and shaped. As a host institution, the IEE-ULB is eager to support applications for residencies that explore European politics, policies, or broader societal transformations, including developments in neighbouring candidate countries.

With its strategic location, vibrant academic networks, and strong links to EU institutions and civil society, the IEE-ULB offers an ideal setting for scholars and professionals engaging with European issues. By combining cutting-edge research with real-world policy and media engagement, it continues to serve as a leading hub for those seeking to understand and shape the future of Europe.

WZB Berlin Social Science Center

The WZB Berlin Social Science Center conducts basic research on problems of modern societies in a globalized world. The research is theory-based, problem-oriented, often long-term, and mostly based on international comparisons. Around 200 scientists from various disciplines work together at the WZB, mainly from sociology, political science, economics, and law. Our research areas are dynamics of social inequalities, society, and economic dynamics, international politics and law, dynamics of political systems, migration and diversity, and political economy of development.