Research at Leiden Observatory spans the entire width of modern astrophysical enquiry. It is based on observation, theory, simulation, and experiment. Two broad clusters characterize the ongoing research. Within each theme, researchers carry out their personal and specialized research programme. The two clusters are: Galaxies, the structures in which they are embedded, Exoplanets, and the formation of stars and planets.
Galaxies and the structures in which they are embedded: Researchers at Leiden Observatory study the fundamental physics – the basic properties, materials and forces that create structure in the Universe. Which processes collect matter into galaxies and gas into stars? With the use of powerful telescopes advanced calculations, and computer simulations, astronomers seek to understand the origin, structure and evolution of galaxies in general and the Milky Way in particular. Through these structures, they try to uncover the unknown physics of dark matter and dark energy that takes up 95% of the Universe.
Read more
Exoplanets and the formation of stars and planets: At Leiden Observatory, researchers investigate the origin of stars and their planetary systems. They detect and characterize planets around other stars (exoplanets) and study how stars and planets form, for instance, by following molecules from interstellar clouds to nascent planetary systems. In this way, they address questions about the origin of life and the possibilities of life existing on planets other than Earth. In other words, is Earth unique?
In the last five years Leiden Observatory hosts nine ERC researchers (list below), these researchers make big contributions to the clusters above.
ERC Reinout van Weeren, Unravelling the pysics of particle acceleration and feedback in galaxy clusters and the cosmic web (2018)
ERC Serena Viti, Molecules as Probes of the Physics of External galaxies (2019)
ERC Joe Hennawi, Quasars in a Neutral Universe: Chronicling the History of Reionization, Enrichment, and Black Hole Growth (2020)
ERC Elena Maria Rossi, Probing our Galaxy from the Center to the outskirts (2020)
ERC Ewine van Dishoeck, Linking chemistry and physics in the planet-forming zones of disks (2021)
ERC Aline Vidotto, The influence of stellar outflows on exoplanetary mass loss (2021)
ERC Henk Hoekstra, Observational Cosmology Using Large Imaging Surveys (2022)
ERC Jackie Hodge, A new View of Young galaxies with ALMA and JWST (2023)
ERC Yamila Miguel, Next-Generation of Interior models of (Exo)planets (2023)
These researchers showcase the diversity of frontier research, the diversity of research infrastructures (from space telescopes to radioastronomy) and the diversity of researchers’ careers (from starting to advance ERC grants) and backgrounds.
The Group of Lasers and Plasmas (GoLP) at Técnico explores the behavior of matter at the most extreme conditions in the Universe, from black holes and neutron stars to the focii of the most intense lasers or particle accelerators on Earth. In a unique combination of theory, experiments and numerical simulations, the three modern pillars of the scientific method, the group has a longstanding commitment with research in frontier questions in its field, grounded on a culture of entrepreneurship, creativity, and international collaboration, seeking and promoting outstanding scientific quality of its members, and has repeatedly proven its commitment to the scientific and technological development of Portugal and Europe. The Group’s aim is to be recognized as one of the best research groups in our field through the reputation of our researchers, the quality of our students, and the successes of our alumni.
Read more
In its vision, GoLP assumes a leading role in its scientific fields, constitutes a central hub for new ideas and approaches, exciting discoveries and developments; is a magnet for outstanding students, post-docs and researchers; provides an exciting research environment similar to the best; sustains its scientific breakthroughs through a unique interplay between theory, simulation and experiments.
The group addresses theory and simulations of the highly nonlinear and complex phenomena associated with plasmas in extreme conditions, resorting to the fastest supercomputers in the World, and experimental and technological exploration of the next generation of intense radiation sources driven by ultra intense lasers, with experiments on lasers at IST and worldwide. The research questions are closely connected with the Nobel Prizes in Physics of 2018 and 2023. At GoLP there are two ERC grant recipients (Luís Oliveira e Silva, ERC advanced grants in 2010 and 2016, and Frederico Fiúza, ERC consolidator grant in 2022), as well as one recipient of European Innovation Council program in 2021 (Marta Fajardo).
For this project, it is expected that the Journalist in Residence will be strongly immersed in the theory and simulation efforts, hosted by Luís Oliveira e Silva, although he/she will have complete freedom to get to know in depth all scientists in the whole group, depending on the project that will be developed. The connection with the theory and simulation team will provide access to unique media resources resulting from the simulation work and also to collaborators worldwide e.g. UCLA, Oxford, and CERN.
Our group studies dipolar quantum gases made of Erbium (Er) and Dysprosium (Dy) atoms. These extraordinarily magnetic species are a powerful new resource for reaching quantum simulation with strong connectivity, in which each atom is coupled to the other over long distances, and exploring exotic phases of matter that have no classical counterpart.
We have three labs: the ERBIUM LAB, where Er was Bose condensed for the first time ever, the Er-Dy LAB which studies quantum dipolar mixtures under a quantum-gas microscope, and the T-Reqs LAB, where we trap Er atoms in arrays of optical tweezers for Rydberg physics. Recently, we have established a theoretical subdivision aimed at studying and predicting dipolar phenomena in dipolar quantum gases and mixtures.