Institute of Chemical Research of Catalonia (ICIQ-CERCA)

Our Institute is organized into three research pillars covering a wide range of chemical disciplines: Innovative Catalysis, Renewable Energies and Molecular Medicine. These are carefully designed to address global challenges, including energy, the environment, health, and materials. Aligning our research efforts with these critical areas, we seek to make meaningful contributions that drive positive change and create a sustainable future.

Read More
Innovative Catalysis
Catalysis is the Institute’s largest and most significant research area, making a significant contribution to sustainable chemistry. Its primary goal is to advance processes and products that enhance resource utilization efficiency and minimize waste generation. This field encompasses a broad range of chemical catalysis investigations, including homogeneous, heterogeneous, supramolecular and enantioselective catalysis. It also involves the development of novel ligands and catalytic processes, as well as the design and simulation of catalytic reactors.

Renewable Energies
At ICIQ, several research groups are actively engaged in various endeavours with a common goal of contributing to the development of new energy solutions that offer viable alternatives to fossil fuels. These efforts include hydrogen generation from water through sustainable processes, the advancement of more efficient photovoltaic devices, and the conversion of CO2 into liquid fuels and feedstocks for the chemical industry.

Molecular medicine
In the molecular medicine research area at ICIQ, several research groups are striving to drive innovation and advancements in healthcare. They aim to develop advanced sensor technologies that can revolutionize medical diagnostics and monitoring, identify new therapeutic compounds targeting specific diseases, and study the interactions between chemicals and biological systems to enhance healthcare solutions.

Photovoltaic Technology & Energy Systems Group at imo-imomec

Imo-imomec is a joint research institute of Hasselt University (UHasselt) and imec where engineers, chemists and physicists conduct multidisciplinary materials research. We focus on advanced material systems for a sustainable and healthy society. Our core domains are energy, sustainable materials, sensors & healthcare materials, and quantum technologies. Imec performs world-leading research in nano-electronics and creates groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, and energy. UHasselt is a young university, but its education and research are well-regarded worldwide – with some excellent international ranking positions. UHasselt is ranked 35th out of 605 in the Times Higher Education ranking of the world’s best universities under 50 (years old), and it is ranked among the best 10 higher education institutions in the European Commission’s U-Multirank.

Read More
Imo-imomec’s energy research is part of: (i) EnergyVille, which is an association of the Flemish research centres KU Leuven, VITO, imec and UHasselt in the field of sustainable energy and intelligent energy systems, and (ii) Solliance, which works with and for the industry, both to fulfil short-term needs of industry, and to convey promising lines of mid- and long-term (thin film) PV research. This project will take place in the PV technology & Energy systems group at imo-imomec , which consists of 3 technology development teams: (i) Thin-film PV, (ii) Wafer-based PV, and (iii) Energy system management.

Solar energy is the most widely available energy resource on Earth, and photovoltaic (PV) solar energy is currently cheaper than any power source ever before. In 1839, Edmond Becquerel discovered the operating principle of a PV solar cell, and in 1883, Charles Fritts developed the very first working cell. It was not until 1954 that the first practical silicon solar cell was demonstrated at Bell Labs, and in the last decades the PV industry has undergone remarkable growth due to both efficiency increases and cost reductions. Today, PV solar energy is the new king of global power markets, as is stated by the International Energy Agency (IEA) based on PV expansion being at its fastest pace in two decades. An even faster pace is projected in the coming years, with the very low cost of PV solar energy driving the global demand for renewables. The PV technology & Energy systems group at imo-imomec has been at the forefront of PV research, development and valorization since 1984, and is therefore the ideal host to study the history, rise and future of solar energy for the energy transition.

Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI)

The surfaces of the human body host colonies of microorganisms, known as microbiomes. Along with bacteria which have a positive effect on human health, microbiomes contain potentially life-threatening pathogens. In the past, broad-spectrum antibiotics have often been used to tackle them. Nowadays it is known that this not only promotes resistance to antibiotics – in many cases, it also damages the microbiome as a whole.

CMFI researchers aim to develop new strategies to control microbial mechanisms and fight infections.

Read More
The Cluster of Excellence CMFI brings together researchers from different disciplines such as infection biology, immunology, bioinformatics, pharmaceutical biology, antibiotics research, molecular and medical microbiology, biotechnology, environmental biology, systems biology, chemistry, and medical history and ethics. Their common goal is to elucidate the mechanisms of interaction between beneficial and harmful bacteria and the host in order to develop novel targeted therapeutic and anti-infective treatments.

The CMFI is one of more than 50 Clusters of Excellence funded by German federal and state governments as part of the Excellence Strategy to sustainably strengthen Germany as a center of science, improve its international competitiveness and make cutting-edge research at German universities visible. In addition to the University of Tübingen, the Max Planck Institute for Biology and the University Hospital Tübingen are involved in the CMFI.

Biomedical Science Research Center “Alexander Fleming” (BSRC FLEMING)

The Biomedical Science Research Center “Alexander Fleming” (BSRC FLEMING) was established through the efforts of Amalia Koutsouri-Fleming, a microbiologist and wife of Alexander Fleming, the Nobel Laureate 1945 in Medicine. She had the vision for a Greek Center of Scientific and Technological Excellence, based on meritocracy, excellence and innovation purposed to attract and develop young Greek researchers.
BSRC FLEMING started its operation in 1999 and is nowadays a top-ranked non-profit research organization of 23 group leaders and 130 researchers, with a mission to perform cutting edge basic and translational research in biomedical sciences, provide state-of the-art training and mentorship to scientists and students of all levels, offer high end scientific and technological services, and engage in technology transfer and innovation. The center is located in an area of 128.000 sq.m. in Vari, a region on the Athenian Riviera. The Fleming Museum of Contemporary Science is also housed on the premises of the research center.

Read More
Its main research directions include Immunity & Inflammation, Neuroscience, Cancer Biology, RNA Biology & Epigenetics, Bioinformatics & Computational Biology. Additionally, BSRC FLEMING has recently established its frontier research in Biomolecular Engineering & Synthetic Biology with a European Research Area chair (ERA Chair), Dr. Georgios Skretas. These research directions reflect the work of its group leaders and serve as links between the two FLEMING Institutes: Institute for Bioinnovation (IBI) and Institute for Fundamental Biomedical Research (IFBR). The focus of IFBR is on unravelling the molecular and cellular basis of disease via novel animal models of human pathologies, while IBI’s vision is to advance fundamental research achievements towards innovative translational biotechnologies and drug development.
BSRC FLEMING’s strength and international recognition arises from pioneering research towards understanding the molecular and cellular basis of human diseases, and development and validation of relevant animal models of chronic inflammatory diseases, neurodegenerative disorders, metabolic diseases, cancer and autoimmune syndromes, among others, and the development of new approaches for their diagnosis and treatment, using transdisciplinary approaches and state-of the art facilities and technologies. It is of note that several of its researchers have been included in the list of outstanding research leaders in Europe awarded ERC grants.
The center also coordinates two major Research Infrastructures (RIs) for modeling human diseases and bioinformatics/biocomputing resources, while it participates in personalized medicine, precision oncology and bioimaging RIs.


August Pi i Sunyer Biomedical Research Institute (IDIBAPS)

IDIBAPS is one of the leading biomedical research centers in Spain with an international projection. IDIBAPS is uniquely located in the Campus Clínic in Barcelona, joining efforts with the Faculty of Medicine of the University of Barcelona and the Hospital Clínic of Barcelona to carry out excellent biomedical research and investigate the most common diseases in our society. Our mission is translational research; that is, we look to ensure that the questions that arise at the patient’s bedside find answers in the laboratory and that advances made in the laboratory are translated rapidly to the patient.

Read More
IDIBAPS research is organized into research areas and multidisciplinary programs.

5 Research Areas and 3 transversal groups:
1. Biological aggression and response mechanisms
2. Respiratory, cardiovascular and renal pathobiology and bioengineering
3. Liver, digestive system and metabolism
4. Clinical and experimental neuroscience
5. Oncology and haematology
6. Transversal research groups focusing on primary care, pharmacology and nursing

Multidisciplinary Programs:
1. Transitional cancer research program
2. Lymphoid neoplasms program
3. Synaptic autoimmunity in neurology, psychiatry and cognitive neuroscience program

Among the multiple research groups, we would like to highlight the following research lines, supported by ERC grants, for the FRONTIERS Science Journalism Residency Program:
– Neuronal control of metabolism directed by Marc Claret, Principal Investigator of MITOSENSING project: https://cordis.europa.eu/project/id/725004
– Cortical circuit dynamics directed by Jaime de la Rocha, Principal Investigator of PRIORS project: https://cordis.europa.eu/project/id/683209
– Molecular pathology of lymphoid neoplasms directed by Elías Campo, Principal Investigator of BCLLatlas project: https://cordis.europa.eu/project/id/810287

National Science Platform (NSP) FOTONIKA-LV

Towards frontier research projects in quantum sciences, space sciences and related technologies (targeting EU Framework program, ESA, and National Science Council calls) under the strategic guidance of two ERA Chairs: Dr.Rashid Ganeev and Prof. Bernard Foing accordingly in named disciplines of photonics sciences.

Creating water smart landscapes

As the global population grows, agricultural activities intensify, leading to increased fertiliser use and diffuse nutrient emissions. This escalating trend poses a significant threat to water bodies, as nutrient run-off from intensive farming practices degrades water quality. Traditional land and water management approaches often lack the precision needed to identify high-priority areas or offer spatially explicit solutions.

In this context, the ERC-funded WaterSmartLand project will pinpoint high-risk areas and propose targeted solutions. Using advanced analysis, modelling and machine learning, the project identifies optimal land management strategies, such as using wetlands and riparian buffer strips, to mitigate nutrient run-off.

Read More
The project will result in global map layers that will allow the identification of critical nutrient run-off sites and carry out the related planning. All the analysis will take place on a global scale, and the results will be tested on pilot sites in Europe and elsewhere. The project will be based on open-source software, so that the resulting data cube solution and machine learning models will be accessible and available for further development by all.

Center for Neuroscience and Cell Biology & Centre for Innovative Biomedicine and Biotechnology

CiBB – Centre for Innovative Biomedicine and Biotechnology, is a Research Center of excellence in the domains of Biomedicine and Biotechnology, which results from a consortium joining CNC-UC — Center for Neuroscience and Cell Biology and iCBR – Coimbra Institute for Clinical and Biomedical Research. In 2024, the Teaming projects MIA-Portugal: Multidisciplinary Institute of Ageing and GeneT – Gene Therapy Center of Excellence have integrated the CiBB multidisciplinary structure.

We can offer an exciting opportunity to delve into the dynamic world of biomedical research and science communication. This fellowship provides hands-on experience in communicating biomedical discoveries through various mediums, including media interactions, video production, and social media management. The FRONTIERS fellows will have the chance to collaborate with an experienced and passionate team, learning and contributing to effective strategies in scientific communication.
The fellowship allows for direct interaction with top researchers in four distinct areas of biomedicine, providing a comprehensive insight into the latest findings and trends in biomedical research.

Read more
Furthermore, the work environment fosters a strong culture of science communication, offering fellows a full immersion into the realm of scientific outreach. Fellows will have the opportunity to develop essential communication skills, create engaging content, and broaden the reach of scientific discoveries to the general public. This fellowship is ideal for professionals interested in exploring the intersection of science, journalism, and digital communication while collaborating with a multidisciplinary and inspiring team.

This offers an immersive experience within the vibrant ecosystem of CNC-UC / CiBB, providing fellows with unique access to the forefront of biomedical research and science communication. Fellows will be fully integrated into the CNC-UC / CiBB community and will have the opportunity to attend weekly scientific seminars and thematic retreats, gaining invaluable insights into cutting-edge research across various biomedical disciplines. They will actively participate in the institution’s science communication dynamics, engaging in various outreach activities and gaining access to scientific platforms to observe experiments and scientific endeavors firsthand.

More about CiBB
With the largest critical mass of researchers in the Centre Region of Portugal, internationally recognized and linked to the Faculties of Pharmacy, Medicine, Sciences and Technology and Economics, as well as to the Institute of Interdisciplinary Research and to the Coimbra University Hospital, CiBB has a high-level of scientific production and attracts talent and funding at national and international levels.

The CiBB stands as the flagship of Biomedical and Biotechnology Sciences at the University of Coimbra (UC). It is the largest R&D Unit in the center region of Portugal and the sole UC-coordinated Associate Laboratory (top 100% evaluation), welcoming circa 700 members.
CiBB comprises 37 dynamic and multidisciplinary research groups, dedicated to understanding how and why diseases develop, particularly those associated with aging, and translating this understanding into clinical applications and technological breakthroughs.
Structured around four thematic pillars, CIBB’s mission spans diverse areas:
1. Neuroscience and Disease: Delving into brain function and dysfunction in disorders such as neurodegenerative diseases, neuropsychiatric conditions, and vision impairments.
2. Metabolism, Aging, and Disease: Investigating the cellular and molecular underpinnings of metabolic dysfunction and aging, and their impact on age-related diseases.
3. Innovative Therapies: Harnessing the potential of stem cells, genetic interventions, and pharmaceuticals to pioneer new treatments for neurodegenerative, cardiovascular, oncological, and infectious conditions.
4. Healthcare Challenges: Tackling healthcare challenges by promoting evidence-based decision-making, engaging citizens, and finding innovative solutions for aging-related questions.
CiBB is committed to nurturing talent, through robust international training programs at the master’s and doctoral levels. Additionally, CiBB bridges the gap between research and society through effective communication and public engagement initiatives.
In collaboration with the Coimbra University Hospital and its Clinical Academic Center, CiBB leverages its strong ties to clinical practice, facilitating the translation of fundamental research findings into clinical benefits. Moreover, CiBB invests on the transformation of scientific breakthroughs into intellectual property, fostering technology transfer and the creation of economic value.

Note: We are open to developing projects that encompass a broader scope, involving communication across different areas of the center, and/or focusing on specific ongoing research projects within the center.


Leibniz Institute of European History

The Leibniz Institute of European History (IEG) in Mainz is an independent research institute. Its purpose is to conduct academic research on European history. The Institute fulfils this purpose through the individual and joint research efforts of its staff and through the research scholarships and fellowships that it awards to academics both from Germany and abroad.

Read More
In 2024, it started its new IEG Research Agenda: “Society”, “religion” together with “digitality” – and, in perspective, “environment” – will form the principal foci of the IEG’s research. The connection between these areas is maintained above all by the Europe Forum. Historical research on Europe in its cross-border and global interdependencies thus captures key processes that have had an impact in the past and continue to do so today. With a view to questions of social cohesion, religious plurality, climate change and digital transformation, they bring the insights of rigorous historical scholarship to bear on European options for action and their limits as well as suggesting alternative paths.
The research projects at the IEG jointly illuminate enduring issues from a long-term perspective. They deal with changes, ruptures and continuities and address memory and the use to which pasts are put. They are organised on a European basis, taking into account relationships and taking a comparative view of interactions on a local, regional, national, international and global level. By incorporating digital processes, historical methods are continuously expanded and conceptually developed. Scholars working at the IEG draw on their projects to contribute to the fields of society, religion and digitality. They also participate in the overarching activities and debates in the Europe Forum.


Leibniz Institute for Natural Product Research and Infection Biology

We dedicate our research to natural products from micro-organisms and the infection biology of pathogenic fungi. Microbial natural products serving as mediators in the biological communication are essential for our lives. However, they play an ambivalent role in this process: On the one hand, they are involved in the emergence of numerous infectious diseases; on the other hand, they belong to the most important sources of medicinal products like antibiotics.

Read More
In order to examine microbial natural products and to understand infectious diseases better, we combine both areas of research. We aim to elucidate how microorganisms produce both pathogenic substances and pharmacologically relevant components. Beyond that, these substances of micro-organisms serve as instruments of communication among themselves. Another module of our research is the interaction of pathogenic microorganisms with their host. We are interested in investigating the methods and tricks that both parties use in this process.

Numerous individual joint projects enable us to acquire new knowledge in the field of biosynthesis and the function of natural products. We use this knowledge to develop innovative ingredients for the diagnosis and therapy of illnesses, including new anti-infectives. Implementing our research results and the models derived thereof, we contribute to the development of a systems biology of infections.