This is a public database of research institutions and projects that want to host science journalists for their FRONTIERS Residencies.
The Hosts Database contains expressions of interest received by the FRONTIERS Team and these are a great starting point for applicants. However, an institution does not have to be in this database to be eligible as a host institution. Journalists are encouraged to do their investigation and contact the research institutions that best fit their project.
If you have any questions or feedback about this database, please check out the FRONTIERS Program Guide and Frequently Asked Questions pages, or write to info@frontiersmedia.eu.
-
Center for Research in Multiscale Science and Engineering of Barcelona (CCEM-UPC) – Reshaping the future with new materials
The Center for Research in Multiscale Science and Engineering of Barcelona (CCEM-UPC) is a multidiciplinary, cutting-edge research center in the field of materials science that aims to provide solutions for health, environmental and energy global challenges. Our research groups are dedicated to research, development and innovation in the fields of micro- and nano-engineering, biomaterials, environment recovery and energy harvesting. We are part of the Universitat Politècnica de Catalunya (UPC) and participate in several EU-funded projects doing research in the frontier of knowledge.
Some of our ERC-granted projects are:
Read More– BAMBBI: Bio-inspired AntiMicrobial Bone BIoceramics. Deciphering contact-based biocidal mechanisms.
This project is part of the “Biomaterials, Biomechanics and Tissue Engineering (BBT)” group, led by Dr. Prof. Maria-Pau Ginebra. It aims to tackle the challenge of bacterial bone infections in orthopaedic and maxillofacial surgery by developing synthetic bone grafts featuring contact-based antimicrobial properties, adding antimicrobial activity to their capacity to support bone regeneration. In addition to being a major breakthrough in the field of bone regeneration, the project is focused on developing new methods of fine-tuning the nanostructure of calcium phosphates which will have an impact in very diverse fields such as catalysis, water purification and protein separation.– SENSATE: Low dimensional semiconductors for optically tuneable solar harvesters.
This project is part of the “Micro and Nanotechnologies – Photovoltaic laboratory” at CCEM, led by Dr. Edgardo Saucedo and Prof. Joaquim Puigdollers. It proposes ground-breaking ideas and concepts for the development of novel materials with exotic optic and electric properties, that can be the solution for a semi-transparent or transparent and universal solar energy harvester. The use of these materials will improve the overall conversion efficiency of solar cells, achieving high efficiencies. If successful, SENSATE will have an unprecedented impact on our perception of solar cell energy, promoting applications that are currently considered marginal in photovoltaic and electronic devices.Frontier Research
Our center encompasses a wide range of research areas in applied materials sciences. From biomedicine and tissue engineering to nanotechnology for the creation of new materials, our research is always pushing the limits of scientific knowledge, developing new knowledge beyond the state-of-the-art. Our center is part of more than 10 EU-funded projects, including ERCs and we count with exceptional and worldly recognized scientists in the fields of physics, engineering and biomedicine.Research DomainContact PersonAriadna Mendozaariadna.mendoza.mederos@upc.eduHosting ConditionsThe science journalist will be based on CCEM's headquarters, located by the sea in campus Diagonal-Besós, Barcelona. They will have a dedicated office space shared with the communication's team for further collaboration, with a computer, access to WiFi and any aditional materials required. We will provide access to the premises (research laboratories, technological infrastructure, and all common facilities, including the cafeteria) during working hours, with the possibility to ask for extensions if necessary. We will also prove access to online resources and the CCEM's mail list and intranet. The journalist might be assigned to a specific research group, or work in close collaboration with several groups, ensuring they will be completely integrated in the scientific community.
-
Barcelona Materials Science Institute (ICMAB, CSIC) – Advanced materials for energy transition, efficient electronics and smart health
The Barcelona Materials Science Institute (ICMAB-CSIC) is a multidisciplinary research center at the forefront of innovation, dedicated to developing advanced functional materials. Our work spans critical fields such as energy, electronics, nanomedicine, and emerging applications yet to be imagined, driving solutions to some of the most pressing global challenges.
– Materials for ENERGY: Clean energy production and storage present critical opportunities where innovative materials can address existing challenges. ICMAB is a globally recognized leader in materials research for the clean energy transition. Key areas include: Light harvesting and management, Post-lithium batteries, Heat harvesting, High-temperature superconductivity, and Photocatalysis for hydrogen production and carbon dioxide conversion. ICMAB researchers actively lead or contribute to numerous European and national projects in these areas, underscoring our commitment to sustainable energy solutions.
Read More– Materials for ELECTRONICS: The digital era demands materials capable of processing and storing data with greater speed, energy efficiency, and sustainability. ICMAB has been at the cutting edge of electronic materials research since its inception, with expertise in: Quantum phenomena for advanced sensors, Complex magnetism, Energy-efficient ultrafast computing, Organic materials for photodetection, and Curved materials for flexible and adaptable electronics. Our work integrates molecular and oxide materials to pave the way for next-generation electronics.
– Materials for HEALTH: Materials are playing an increasingly pivotal role in healthcare, from diagnosis and infection prevention to disease treatment. ICMAB’s rapidly growing health research activities are internationally recognized, with significant contributions to: Interface engineering for infection prevention, or Development of soft materials for combating cancer and other diseases, including rare ones. ICMAB leads national and international projects and hosts top-tier infrastructures like NANBIOSIS ICTS, providing services in-house and externally, particularly through the CIBER-BBN network.
For over three decades, ICMAB has maintained its passion for advancing materials science, generating groundbreaking knowledge, and transferring it to society and industry. Located on the Universitat Autònoma de Barcelona (UAB) campus, ICMAB benefits from proximity to other research and technological centers, as well as state-of-the-art facilities such as the ALBA Synchrotron and UAB Research Park. With a vibrant community of over 250 members, ICMAB is an attractive hub for young researchers worldwide.
ICMAB offers comprehensive scientific services, including a 10,000-class cleanroom (Nanoquim Platform) open to academic and industrial partners and access to advanced equipment and facilities for cutting-edge research. Our researchers are also very active in innovation & technology transfer, education, communication & outreach.Frontier Research
ICMAB’s current mission is clear: Leading the material transition for tomorrow’s world. The science conducted at ICMAB can be considered frontier research due to several key factors:
– Pioneering Materials Research: ICMAB focuses on developing advanced materials, such as functional materials for electronics, energy storage, and biomedical applications. These areas push the boundaries of what is technologically possible, often addressing fundamental challenges in science and engineering.
– Interdisciplinary Approach: The institute integrates physics, chemistry, engineering, and biology to explore complex scientific questions. This multidisciplinary collaboration fosters innovative solutions that transcend traditional boundaries.
– Breakthrough Discoveries: Research at ICMAB has led to significant advances in fields like organic electronics and photovoltaics, high temperature superconductors, and nanostructured photonic and soft materials. These breakthroughs are critical for developing new technologies that address global challenges, such as sustainable energy and healthcare.
– Cutting-edge Techniques: The institute employs state-of-the-art experimental and computational tools to investigate material properties at the atomic and molecular levels. This includes using advanced synthesis methods, high resolution microscopy, and quantum simulations. The R&D activities are strongly backed up by specialised technical staff available in the scientific equipment platforms.
– International Recognition and Collaboration: ICMAB collaborates with leading institutions worldwide and contributes to prestigious research initiatives, including large infrastructures and advisory panels. This global engagement reflects its standing as a hub for cutting-edge materials science.
– Focus on Grand Challenges: The institute addresses some of the most pressing issues of our time, including energy transition, environmental sustainability, and human health. Their efforts to develop next-generation batteries, photovoltaics, and bio-inspired materials exemplify frontier science.
Through its innovative projects, groundbreaking methodologies, and dedication to tackling complex scientific and societal challenges, ICMAB embodies the essence of frontier research.Research DomainContact PersonAnna May Masnoucommunication@icmab.esHosting ConditionsWe are committed to providing science journalists in residence with a welcoming and supportive environment to ensure a productive and enriching experience. – The journalist will have access to a shared workspace equipped with a desk, computer, and internet connectivity – The institute's facilities are accessible during regular working hours, with extended access upon request. Most people work onsite, but remote or hybrid working is also possible. – A dedicated communication team will provide support for interviews, access to reserachers, resources for content creation… – Full access to our library, online journals, scientific databases and guided support. – Access to cafeteria and meeting rooms, participation in team meetings, workshops and seminars and support and guidance.
-
Cosmology & Astroparticle physics
Our group works on the fields of theoretical cosmology and astroparticle physics with the goal of understanding the fundamental laws of the universe, exploiting synergies between astrophysical observations and laboratory experiments. This project would be embedded within UNDARK, a recently founded consortium funded by the EU “Widening participation and spreading excellence programme” (TWINNING project number 101159929). This consortium will carry out, from 2024 until 2027 and in collaboration with other partner institutions such as CERN, or the CNRS, an intense scientific and outreach program focused on shedding light on the so-called “dark universe”.
As we currently know from astrophysical observations, barely 18% of the total matter of the Cosmos is made up of the elements in atoms with which we are familiar, while the remaining 82%, termed dark matter, is the dominant type of matter in galaxies. In addition, all matter, ordinary and dark, currently only makes up 31% of the energy in the universe, with the rest being an even more mysterious component called dark energy which causes the universe as a whole to accelerate while it is expanding.
Read moreAdvancing these fundamental questions is currently the focus of a multidisciplinary effort at the frontiers of astroparticle physics and cosmology, that is setting the scene for future scientific breakthroughs. Among these major puzzles, the problem of dark matter exhibits the most diverse set of observational manifestations, ranging from the cosmic microwave background and the large-scale distribution of galaxies to galactic dynamics. Hence, this area of astroparticle physics is the subject of extensive theoretical scrutiny.
The ultimate scientific goal of the UNDARK consortium is to explore the dark universe and, in particular, discover what is dark matter made of. For this, we plan to use the state-of-the-art telescopes and facilities installed in the Canary Islands Observatories with the assistance of world-class institutions on the fields of astroparticle physics and cosmology. We have planned a vibrant scientific and artistic exchange program, several scientific meetings and schools, as well as there will be scientific staff and a scientific illustrator hired under the project.
Research DomainContact PersonJorge Martin Camalichjcamalich@iac.esHosting ConditionsThe scientific journalist will enjoy the following conditions: – will work independently within the Communication and Press (UC3) department of the Instituto de Astrofísica de Canarias (IAC). – will have an individual working desk within a shared office with other members of the UC3 department (most working in the office). – will have 24/7 access to the premises. – will have access to library, cafeteria and all other facilities and resorurces as any other member of the IAC research and UC3 teams.
-
Department of Mathematics – University of Valencia
The research done in applied mathematics can be crucial to numerical simulations in other fields in physics and astrophysics, so the nature of my research is quite multidisciplinary since input from the field associated to the simulations is crucial to succeeding. On the other hand, the gravitational wave astronomy field is qualified as frontier research due to the complexity of the research in all the areas involved, from building of the detectors to modeling source and development of data analysis techniques. Understanding the universe and all their fascinating objects has always had a great impact in our society.
Read MoreThe research lines focus on applied mathematics and astrophysics, with special interest in the development of numerical methods for partial differential equations, numerical relativity and gravitational waves. Isabel Cordero-Carrión is currently a member of the Virgo Collaboration as part of the Valencia Virgo group. In this role, she holds several management positions: Isabel serves as one of the two co-ombudspersons, is the current Virgo outreach coordinator, and is a member of the Core Program committee. Additionally, she is involved with the Einstein Telescope project and the Einstein Telescope Preparation Phase project.Apart from her teaching, research, and management responsibilities at the university, Isabel Cordero-Carrión is highly engaged in outreach and communication. She is a member of the team behind the Oscilador Armónico podcast, a regular participant in the Coffee Break: Señal y Ruido podcast, and occasionally contributes to the A Ciencia Cierta podcast.
Research DomainContact PersonIsabel Cordero-Carriónisabel.cordero@uv.esHosting ConditionsThe journalist will share an office with a researcher. The host institution have a scientific communication and innovation unit (https://www.uv.es/uvweb/unitat-cultura-cientifica-innovacio-catedra-divulgacio-ciencia/ca/unitat-cultura-cientifica-innovacio-catedra-divulgacio-ciencia-1285898622434.html), but it is not very big; I have direct contact with this unit. Most time my team is working in the office, sometimes we also work remotely. There will be no problem to access the premises 24/7, and to give access to the rest of the university facilities (cafeteria, library, online resources).
-
Institute of Chemical Research of Catalonia (ICIQ-CERCA)
Our Institute is organized into three research pillars covering a wide range of chemical disciplines: Innovative Catalysis, Renewable Energies and Molecular Medicine. These are carefully designed to address global challenges, including energy, the environment, health, and materials. Aligning our research efforts with these critical areas, we seek to make meaningful contributions that drive positive change and create a sustainable future.
Read MoreInnovative Catalysis
Catalysis is the Institute’s largest and most significant research area, making a significant contribution to sustainable chemistry. Its primary goal is to advance processes and products that enhance resource utilization efficiency and minimize waste generation. This field encompasses a broad range of chemical catalysis investigations, including homogeneous, heterogeneous, supramolecular and enantioselective catalysis. It also involves the development of novel ligands and catalytic processes, as well as the design and simulation of catalytic reactors.Renewable Energies
At ICIQ, several research groups are actively engaged in various endeavours with a common goal of contributing to the development of new energy solutions that offer viable alternatives to fossil fuels. These efforts include hydrogen generation from water through sustainable processes, the advancement of more efficient photovoltaic devices, and the conversion of CO2 into liquid fuels and feedstocks for the chemical industry.Molecular medicine
In the molecular medicine research area at ICIQ, several research groups are striving to drive innovation and advancements in healthcare. They aim to develop advanced sensor technologies that can revolutionize medical diagnostics and monitoring, identify new therapeutic compounds targeting specific diseases, and study the interactions between chemicals and biological systems to enhance healthcare solutions.Research DomainContact PersonMarta Llorens Fonsmllorens@iciq.catHosting ConditionsThe science journalists in residence will have an individual desk in an office shared with the Communication and Outreach unit. ICIQ has a unit with experts in corporate and scientific communication and disemination. The centre offers flexible hours, as it is open from 7 a.m. to 10 p.m.
-
Music Technology Group (MTG)
The Music Technology Group (MTG) of the Pompeu Fabra University (UPF) is an internationally recognized research group with 30 years of experience. The group is part of the Department of Information and Communications Technologies, and its research is especially active in topics such as audio signal processing, musical information retrieval, musical interfaces, and computational musicology. The group has extensive experience in research projects both nationally and internationally, and actively works in collaboration with industry. Some technology transfer success stories include Vocaloid, a singing voice synthesiser developed with Yamaha which gained great popularity around the world thanks to the virtual singer Hatsune Miku, and the commercial exploitation of the interactive instrument Reactable, developed at the MTG and used by many popular bands such as Bjork or Coldplay.
Read MoreThe Music Technology Group (MTG) of the Pompeu Fabra University (UPF) is an internationally recognized research group with 30 years of experience. The group is part of the Department of Information and Communications Technologies, and its research is especially active in topics such as audio signal processing, musical information retrieval, musical interfaces, and computational musicology. The group has extensive experience in research projects both nationally and internationally, and actively works in collaboration with industry. Some technology transfer success stories include Vocaloid, a singing voice synthesiser developed with Yamaha which gained great popularity around the world thanks to the virtual singer Hatsune Miku, and the commercial exploitation of the interactive instrument Reactable, developed at the MTG and used by many popular bands such as Bjork or Coldplay.
In the last years the research team has been involved in some projects related to Artificial intelligence (AI) and its impact in the processes of creating, disseminating, learning and listening to music. The MTG has recently launched a Chair on AI & Music focused on the ethical and social implications of AI in the music sector.
AI has been heralded as a transformative force within the music sector, promising unparalleled opportunities to amplify creativity, accessibility, and efficiency. However, amidst this promise, concerns have arisen from most of the established stakeholders regarding the risks it poses, particularly for artists, prompting calls for robust public regulations. This has triggered an unprecedented public debate in which ethical concerns are taking center stage, underscoring the need for creating AI technologies founded on strong ethical principles.
We should make sure that AI technologies can assist all the music sector stakeholders on their diverse tasks, while placing artists/musicians at the center. Large AI models should aim to capture the essence of music understanding and they should be able to solve specific problems by fine-tuning them. These large AI models should be trained on huge amounts of diverse multimodal music data and their outputs should capture the complex relationships that make up music. The fine-tuned models should support specific tasks related to the creation, production, distribution, access, analysis, or enjoyment of music.
Research DomainContact PersonSonia Espísonia.espi@upf.eduHosting ConditionsDesk in an office at the research lab, and possibility to work remotely. Access to cafeteria, library, contact with the institutional press office. Interaction with the research team and participation in research meetings.