Kempelen Institute of Intelligent Technologies

KInIT stands out with its extensive expertise in AI. It encourages knowledge spreading, talent development, and responsible innovation. It advocates quality, ethics, and fairness and is active in policy advising. KInIT proves its excellence in daily operations, with its industry research collaborations, PhD and internship programmes, European projects, and an extensive network in Slovakia and Central Europe R&I. Its activities focus strongly on the society, from research topics (e.g., disinformation, language, environment), through advising and commenting on Slovak and EU policies, popularising science, to young talent nurturing.

Research topics:

  • Misinformation analysis and characterization, fact-checking support
  • Machine learning based detection and prediction methods
  • Interpretation and explanation of machine learning models
  • Neural language models (inc. LLMs)
  • Interpretability and transparency of AI
  • Predictive modeling
  • Anomaly detection
  • Societal and ethical impacts of intelligent technologies
  • Human-centric and trustworthy AI
  • AI regulation and digital governance
Read More
Frontier research
Currently implementing in total 13 international research projects: seven in Horizon Europe scheme, two in Digital Europe, one in EMIF, two in Interreg and one in Visegrad Fund (see more here: https://kinit.sk/research/projects/). We are proud that we can collaborate with renowned research institutions across the world. In these research projects we have 109 partners from 27 countries.
The scientific results are regularly published on top-tier venues as: ACL, EMNLP, NAACL, ACM Computing Surveys, AAAI, or RecSys (see more here: https://kinit.sk/research/publications/).

Center for Research in Multiscale Science and Engineering of Barcelona (CCEM-UPC) – Reshaping the future with new materials

The Center for Research in Multiscale Science and Engineering of Barcelona (CCEM-UPC) is a multidiciplinary, cutting-edge research center in the field of materials science that aims to provide solutions for health, environmental and energy global challenges. Our research groups are dedicated to research, development and innovation in the fields of micro- and nano-engineering, biomaterials, environment recovery and energy harvesting. We are part of the Universitat Politècnica de Catalunya (UPC) and participate in several EU-funded projects doing research in the frontier of knowledge.

Some of our ERC-granted projects are:

Read More

– BAMBBI: Bio-inspired AntiMicrobial Bone BIoceramics. Deciphering contact-based biocidal mechanisms.
This project is part of the “Biomaterials, Biomechanics and Tissue Engineering (BBT)” group, led by Dr. Prof. Maria-Pau Ginebra. It aims to tackle the challenge of bacterial bone infections in orthopaedic and maxillofacial surgery by developing synthetic bone grafts featuring contact-based antimicrobial properties, adding antimicrobial activity to their capacity to support bone regeneration. In addition to being a major breakthrough in the field of bone regeneration, the project is focused on developing new methods of fine-tuning the nanostructure of calcium phosphates which will have an impact in very diverse fields such as catalysis, water purification and protein separation.

– SENSATE: Low dimensional semiconductors for optically tuneable solar harvesters.
This project is part of the “Micro and Nanotechnologies – Photovoltaic laboratory” at CCEM, led by Dr. Edgardo Saucedo and Prof. Joaquim Puigdollers. It proposes ground-breaking ideas and concepts for the development of novel materials with exotic optic and electric properties, that can be the solution for a semi-transparent or transparent and universal solar energy harvester. The use of these materials will improve the overall conversion efficiency of solar cells, achieving high efficiencies. If successful, SENSATE will have an unprecedented impact on our perception of solar cell energy, promoting applications that are currently considered marginal in photovoltaic and electronic devices.

Frontier Research
Our center encompasses a wide range of research areas in applied materials sciences. From biomedicine and tissue engineering to nanotechnology for the creation of new materials, our research is always pushing the limits of scientific knowledge, developing new knowledge beyond the state-of-the-art. Our center is part of more than 10 EU-funded projects, including ERCs and we count with exceptional and worldly recognized scientists in the fields of physics, engineering and biomedicine.

Barcelona Materials Science Institute (ICMAB, CSIC) – Advanced materials for energy transition, efficient electronics and smart health

The Barcelona Materials Science Institute (ICMAB-CSIC) is a multidisciplinary research center at the forefront of innovation, dedicated to developing advanced functional materials. Our work spans critical fields such as energy, electronics, nanomedicine, and emerging applications yet to be imagined, driving solutions to some of the most pressing global challenges.

– Materials for ENERGY: Clean energy production and storage present critical opportunities where innovative materials can address existing challenges. ICMAB is a globally recognized leader in materials research for the clean energy transition. Key areas include: Light harvesting and management, Post-lithium batteries, Heat harvesting, High-temperature superconductivity, and Photocatalysis for hydrogen production and carbon dioxide conversion. ICMAB researchers actively lead or contribute to numerous European and national projects in these areas, underscoring our commitment to sustainable energy solutions.

Read More

– Materials for ELECTRONICS: The digital era demands materials capable of processing and storing data with greater speed, energy efficiency, and sustainability. ICMAB has been at the cutting edge of electronic materials research since its inception, with expertise in: Quantum phenomena for advanced sensors, Complex magnetism, Energy-efficient ultrafast computing, Organic materials for photodetection, and Curved materials for flexible and adaptable electronics. Our work integrates molecular and oxide materials to pave the way for next-generation electronics.

– Materials for HEALTH: Materials are playing an increasingly pivotal role in healthcare, from diagnosis and infection prevention to disease treatment. ICMAB’s rapidly growing health research activities are internationally recognized, with significant contributions to: Interface engineering for infection prevention, or Development of soft materials for combating cancer and other diseases, including rare ones. ICMAB leads national and international projects and hosts top-tier infrastructures like NANBIOSIS ICTS, providing services in-house and externally, particularly through the CIBER-BBN network.

For over three decades, ICMAB has maintained its passion for advancing materials science, generating groundbreaking knowledge, and transferring it to society and industry. Located on the Universitat Autònoma de Barcelona (UAB) campus, ICMAB benefits from proximity to other research and technological centers, as well as state-of-the-art facilities such as the ALBA Synchrotron and UAB Research Park. With a vibrant community of over 250 members, ICMAB is an attractive hub for young researchers worldwide.
ICMAB offers comprehensive scientific services, including a 10,000-class cleanroom (Nanoquim Platform) open to academic and industrial partners and access to advanced equipment and facilities for cutting-edge research. Our researchers are also very active in innovation & technology transfer, education, communication & outreach.

Frontier Research
ICMAB’s current mission is clear: Leading the material transition for tomorrow’s world. The science conducted at ICMAB can be considered frontier research due to several key factors:
– Pioneering Materials Research: ICMAB focuses on developing advanced materials, such as functional materials for electronics, energy storage, and biomedical applications. These areas push the boundaries of what is technologically possible, often addressing fundamental challenges in science and engineering.
– Interdisciplinary Approach: The institute integrates physics, chemistry, engineering, and biology to explore complex scientific questions. This multidisciplinary collaboration fosters innovative solutions that transcend traditional boundaries.
– Breakthrough Discoveries: Research at ICMAB has led to significant advances in fields like organic electronics and photovoltaics, high temperature superconductors, and nanostructured photonic and soft materials. These breakthroughs are critical for developing new technologies that address global challenges, such as sustainable energy and healthcare.
– Cutting-edge Techniques: The institute employs state-of-the-art experimental and computational tools to investigate material properties at the atomic and molecular levels. This includes using advanced synthesis methods, high resolution microscopy, and quantum simulations. The R&D activities are strongly backed up by specialised technical staff available in the scientific equipment platforms.
– International Recognition and Collaboration: ICMAB collaborates with leading institutions worldwide and contributes to prestigious research initiatives, including large infrastructures and advisory panels. This global engagement reflects its standing as a hub for cutting-edge materials science.
– Focus on Grand Challenges: The institute addresses some of the most pressing issues of our time, including energy transition, environmental sustainability, and human health. Their efforts to develop next-generation batteries, photovoltaics, and bio-inspired materials exemplify frontier science.
Through its innovative projects, groundbreaking methodologies, and dedication to tackling complex scientific and societal challenges, ICMAB embodies the essence of frontier research.

Cosmology & Astroparticle physics

Our group works on the fields of theoretical cosmology and astroparticle physics with the goal of understanding the fundamental laws of the universe, exploiting synergies between astrophysical observations and laboratory experiments. This project would be embedded within UNDARK, a recently founded consortium funded by the EU “Widening participation and spreading excellence programme” (TWINNING project number 101159929). This consortium will carry out, from 2024 until 2027 and in collaboration with other partner institutions such as CERN, or the CNRS, an intense scientific and outreach program focused on shedding light on the so-called “dark universe”.

As we currently know from astrophysical observations, barely 18% of the total matter of the Cosmos is made up of the elements in atoms with which we are familiar, while the remaining 82%, termed dark matter, is the dominant type of matter in galaxies. In addition, all matter, ordinary and dark, currently only makes up 31% of the energy in the universe, with the rest being an even more mysterious component called dark energy which causes the universe as a whole to accelerate while it is expanding.

Read more

Advancing these fundamental questions is currently the focus of a multidisciplinary effort at the frontiers of astroparticle physics and cosmology, that is setting the scene for future scientific breakthroughs. Among these major puzzles, the problem of dark matter exhibits the most diverse set of observational manifestations, ranging from the cosmic microwave background and the large-scale distribution of galaxies to galactic dynamics. Hence, this area of astroparticle physics is the subject of extensive theoretical scrutiny.

The ultimate scientific goal of the UNDARK consortium is to explore the dark universe and, in particular, discover what is dark matter made of. For this, we plan to use the state-of-the-art telescopes and facilities installed in the Canary Islands Observatories with the assistance of world-class institutions on the fields of astroparticle physics and cosmology. We have planned a vibrant scientific and artistic exchange program, several scientific meetings and schools, as well as there will be scientific staff and a scientific illustrator hired under the project.

Department of Mathematics – University of Valencia

The research done in applied mathematics can be crucial to numerical simulations in other fields in physics and astrophysics, so the nature of my research is quite multidisciplinary since input from the field associated to the simulations is crucial to succeeding. On the other hand, the gravitational wave astronomy field is qualified as frontier research due to the complexity of the research in all the areas involved, from building of the detectors to modeling source and development of data analysis techniques. Understanding the universe and all their fascinating objects has always had a great impact in our society.

Read More
The research lines focus on applied mathematics and astrophysics, with special interest in the development of numerical methods for partial differential equations, numerical relativity and gravitational waves. Isabel Cordero-Carrión is currently a member of the Virgo Collaboration as part of the Valencia Virgo group. In this role, she holds several management positions: Isabel serves as one of the two co-ombudspersons, is the current Virgo outreach coordinator, and is a member of the Core Program committee. Additionally, she is involved with the Einstein Telescope project and the Einstein Telescope Preparation Phase project.

Apart from her teaching, research, and management responsibilities at the university, Isabel Cordero-Carrión is highly engaged in outreach and communication. She is a member of the team behind the Oscilador Armónico podcast, a regular participant in the Coffee Break: Señal y Ruido podcast, and occasionally contributes to the A Ciencia Cierta podcast.

Institute of Chemical Research of Catalonia (ICIQ-CERCA)

Our Institute is organized into three research pillars covering a wide range of chemical disciplines: Innovative Catalysis, Renewable Energies and Molecular Medicine. These are carefully designed to address global challenges, including energy, the environment, health, and materials. Aligning our research efforts with these critical areas, we seek to make meaningful contributions that drive positive change and create a sustainable future.

Read More
Innovative Catalysis
Catalysis is the Institute’s largest and most significant research area, making a significant contribution to sustainable chemistry. Its primary goal is to advance processes and products that enhance resource utilization efficiency and minimize waste generation. This field encompasses a broad range of chemical catalysis investigations, including homogeneous, heterogeneous, supramolecular and enantioselective catalysis. It also involves the development of novel ligands and catalytic processes, as well as the design and simulation of catalytic reactors.

Renewable Energies
At ICIQ, several research groups are actively engaged in various endeavours with a common goal of contributing to the development of new energy solutions that offer viable alternatives to fossil fuels. These efforts include hydrogen generation from water through sustainable processes, the advancement of more efficient photovoltaic devices, and the conversion of CO2 into liquid fuels and feedstocks for the chemical industry.

Molecular medicine
In the molecular medicine research area at ICIQ, several research groups are striving to drive innovation and advancements in healthcare. They aim to develop advanced sensor technologies that can revolutionize medical diagnostics and monitoring, identify new therapeutic compounds targeting specific diseases, and study the interactions between chemicals and biological systems to enhance healthcare solutions.

Photovoltaic Technology & Energy Systems Group at imo-imomec

Imo-imomec is a joint research institute of Hasselt University (UHasselt) and imec where engineers, chemists and physicists conduct multidisciplinary materials research. We focus on advanced material systems for a sustainable and healthy society. Our core domains are energy, sustainable materials, sensors & healthcare materials, and quantum technologies. Imec performs world-leading research in nano-electronics and creates groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, and energy. UHasselt is a young university, but its education and research are well-regarded worldwide – with some excellent international ranking positions. UHasselt is ranked 35th out of 605 in the Times Higher Education ranking of the world’s best universities under 50 (years old), and it is ranked among the best 10 higher education institutions in the European Commission’s U-Multirank.

Read More
Imo-imomec’s energy research is part of: (i) EnergyVille, which is an association of the Flemish research centres KU Leuven, VITO, imec and UHasselt in the field of sustainable energy and intelligent energy systems, and (ii) Solliance, which works with and for the industry, both to fulfil short-term needs of industry, and to convey promising lines of mid- and long-term (thin film) PV research. This project will take place in the PV technology & Energy systems group at imo-imomec , which consists of 3 technology development teams: (i) Thin-film PV, (ii) Wafer-based PV, and (iii) Energy system management.

Solar energy is the most widely available energy resource on Earth, and photovoltaic (PV) solar energy is currently cheaper than any power source ever before. In 1839, Edmond Becquerel discovered the operating principle of a PV solar cell, and in 1883, Charles Fritts developed the very first working cell. It was not until 1954 that the first practical silicon solar cell was demonstrated at Bell Labs, and in the last decades the PV industry has undergone remarkable growth due to both efficiency increases and cost reductions. Today, PV solar energy is the new king of global power markets, as is stated by the International Energy Agency (IEA) based on PV expansion being at its fastest pace in two decades. An even faster pace is projected in the coming years, with the very low cost of PV solar energy driving the global demand for renewables. The PV technology & Energy systems group at imo-imomec has been at the forefront of PV research, development and valorization since 1984, and is therefore the ideal host to study the history, rise and future of solar energy for the energy transition.

Paul Drude Institute for Solid State Electronics

The Paul-Drude-Institut für Festkörperelektronik (PDI) is a research institute in Berlin, Germany. We perform basic and applied research at the nexus of materials science, condensed matter physics, and device engineering. The institute is part of the Forschungsverbund Berlin and a member of the Leibniz Association.

At PDI, we focus on the fabrication and analysis of nanomaterials for semiconductor technology. Since our foundation in 1992, we have been dedicated to the advancement of materials science, particularly in the development and application of molecular beam epitaxy (MBE). We have the expertise and facilities in-house to manage the entire process from growth of materials, to microstructural characterization, spectroscopic analysis, and theoretical modeling. PDI works closely with partners from science, industry and academia, and actively engages in the transfer of knowledge and technologies to the public. The institute is committed to advancing science through the training and education of young researchers.

Cavendish Laboratory

For 150 years, the Cavendish Laboratory has been at the forefront of scientific discovery. Our researchers work at the frontier of physics, from experimental and theoretical through to applied physics in biology, biomedicine and the life sciences, and the physics of sustainability.
The core of the Laboratory’s programme has been, and continues to be, experimental physics, supported by excellence in theory. Much of our research and teaching has been driven by the desire to understand physics at its most basic level and to answer many of the ‘big questions’ in physics.

Read More
We work across ten key research themes: Astrophysics, Physics of Soft Matter and NanoSystems, Energy Materials, Applied Quantum Physics and Devices, Physics of Life, High Energy Physics, Theory of Condensed Matter, Synthetic Quantum Systems, Fundamental Physics of Quantum Matter and Quantum Information and Control.
These fields encompass a variety of research groups, eachin with its own scientific aims and ambitions but united by two common goals:
– the search for a fundamental understanding of the Universe and the laws that govern it
– seeking new ways to apply the laws of nature.

Music Technology Group (MTG)

The Music Technology Group (MTG) of the Pompeu Fabra University (UPF) is an internationally recognized research group with 30 years of experience. The group is part of the Department of Information and Communications Technologies, and its research is especially active in topics such as audio signal processing, musical information retrieval, musical interfaces, and computational musicology. The group has extensive experience in research projects both nationally and internationally, and actively works in collaboration with industry. Some technology transfer success stories include Vocaloid, a singing voice synthesiser developed with Yamaha which gained great popularity around the world thanks to the virtual singer Hatsune Miku, and the commercial exploitation of the interactive instrument Reactable, developed at the MTG and used by many popular bands such as Bjork or Coldplay.

Read More
The Music Technology Group (MTG) of the Pompeu Fabra University (UPF) is an internationally recognized research group with 30 years of experience. The group is part of the Department of Information and Communications Technologies, and its research is especially active in topics such as audio signal processing, musical information retrieval, musical interfaces, and computational musicology. The group has extensive experience in research projects both nationally and internationally, and actively works in collaboration with industry. Some technology transfer success stories include Vocaloid, a singing voice synthesiser developed with Yamaha which gained great popularity around the world thanks to the virtual singer Hatsune Miku, and the commercial exploitation of the interactive instrument Reactable, developed at the MTG and used by many popular bands such as Bjork or Coldplay.
In the last years the research team has been involved in some projects related to Artificial intelligence (AI) and its impact in the processes of creating, disseminating, learning and listening to music. The MTG has recently launched a Chair on AI & Music focused on the ethical and social implications of AI in the music sector.
AI has been heralded as a transformative force within the music sector, promising unparalleled opportunities to amplify creativity, accessibility, and efficiency. However, amidst this promise, concerns have arisen from most of the established stakeholders regarding the risks it poses, particularly for artists, prompting calls for robust public regulations. This has triggered an unprecedented public debate in which ethical concerns are taking center stage, underscoring the need for creating AI technologies founded on strong ethical principles.
We should make sure that AI technologies can assist all the music sector stakeholders on their diverse tasks, while placing artists/musicians at the center. Large AI models should aim to capture the essence of music understanding and they should be able to solve specific problems by fine-tuning them. These large AI models should be trained on huge amounts of diverse multimodal music data and their outputs should capture the complex relationships that make up music. The fine-tuned models should support specific tasks related to the creation, production, distribution, access, analysis, or enjoyment of music.