Genome of Europe

The Genome of Europe project is at the forefront of science and will -for the first time- bring together a large and comprehensive genetic dataset of DNA variation across all major groups of citizens living in Europe. GoE represents a unique collaboration across >30 countries to gather genetic information from their citizens as a reference database and make that accessible for medical and basic research. It is a very important first step to start using genetic information in health care and prevention, in particular in personalized or precision medicine and prevention.
So far, several genetic datasets have been available to scientists but these were relatively small and biased towards in particular inhabitants of the USA and UK. While the current GoE project is funded to collect at least 100,000 genomes of European citizens, the GoE database is expected to grow to >500,000 reference genomes as part of the 1 million genomes initiative (https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes). The GoE project promotes scientific excellence by bringing together the major genetic groups, bio-informaticians, ELSI experts, and sequencing centers across Europe (>50 institutes and >200 scientists) which will collaborate in creating the GoE database for the coming 4 years.

Read more
The project is highly innovative for genomics technology by using (combinations of) the latest whole genome sequencing techniques from diverse companies including Illumina, PacBio, Oxford Nanopore Technologies (ONT), and MGI. These include so-called long read sequencing techniques which have so far never been used in any genome database. Long read genome sequencing techniques allow to reveal the last missing 10% of the human genome after the Human Genome Project and its sequela since 2000 have determined the first 90% by short read technologies. GoE will boost such technological innovation and bring Europe to the forefront of genomics at the international stage.
Several ground breaking pilot projects are embedded that will use the genetic data as collected within GoE, such as the calibration of the polygenic risk scores (PRS) to local genetic variation. PRS are now widely investigated and also touted to move precision medicine and prevention forward, especially for the most common diseases of our greying society such as cancer, dementia, diabetes, osteoporosis and osteoarthritis, and cardiovascular diseases. The large and diverse GoE dataset will allow such PRS to be implemented across European population subgroups that differ in their genetic background. Examples include the application of PRS in breast cancer screening programs based on mammography, cardiovascular screening programs using genetically determined cholesterol levels, and use of pharmacogenetic information to select and optimize medication.