University of Graz – Climate Change

Understanding the climate system and climate change, exploring changing climate risks and impacts, low carbon transition solutions and building climate resilience are the major aims of one field of excellence at the University of Graz. At the Wegener Center for Climate and Global Change scientists from geophysics and climate physics, meteorology, economics, transition research, geography and regional research deal with both the physically oriented and the socio-economic aspects of climate change and global change as well as the transition to a low-carbon world.

Read More

They are part of the network Climate Change Graz, an association of more than 100 researchers who investigate which economic, production-related, social, political and legal changes are necessary for a profound and sustainable transformation. In addition to scientific excellence the goal is to raise awareness of the urgency and personal concern, especially among opinion leaders and multipliers. And, in a further step, to initiate the creation of new framework conditions that can lead to changes in the behaviour of organisations, companies and people.
There are four research groups at the Wegener Center tackling questions such as: How is global warming developing? How are individuals and society affected by climate change? How do we achieve the net-zero target?

The University of Graz is located in the south-east of Austria. Founded in 1585, it is the second oldest and – with almost 30,000 students and nearly 5000 employees – also the second largest university of the country. It has six faculties – Humanities, Catholic Theology, Natural Sciences, Law, Social and Economic Sciences as well as Environmental, Regional and Educational Sciences. Their key objective is to conduct research at the highest level in these areas. Journalists in residence will have the opportunity to gain insights in all of them.

University of Graz – Digital Humanities

The digital preservation of and digital research into our cultural heritage is the aim of the Department of Digital Humanities. In terms of content, the semantic and formal indexing and mediation of digital representations of cultural artifacts is the central research topic of the department. One of the most recent and most interesting projects is GlossIT, analysing glosses – annotations to medieval texts – in their function as first-hand testimonies for the close linguistic and cultural connections between Insular Celtic and Latin speakers. Glosses are fingerprints of the society in which texts were composed, copied, and read. Most important, they offer insights into the multilingual and multi-ethnic environment of medieval manuscript and text production. The project acquired an ERC Consolidator Grant in late 2023.

Read More
Another project – funded by the ERC with an Advanced Grant – explores the interaction of human and artificial intelligence in a virtual research environment for medieval studies. Computers need lots of examples to “learn” – and they need people to interpret the suggestions they make. Man and machine collaborate in investigating more than 600,000 medieval and early modern legal documents on the web portal monasterium.net. In order to properly classify these stories, you need to know what people in the past wanted to record in documents, how they did it and what they used them for. Researchers investigate European trends and regional differences in the design and use of 14th and 15th century charters. What influence did pan-European political institutions such as the Roman Church have on regional documentary practice? How did local and regional notarisation practices react to the spread of Roman law among the legal thinkers of Europe? How do the two widespread authentication practices, by seal and by notarial signature, relate to each other? The observations made on the digital representations of the documents will be related to major European events such as the Western Schism (1378-1417) or the Great Plague (1348/49) and the ensuing economic crisis.

Cutting-edge historical research is also conducted at the Department of Classics. The project COLLAPSE is questioning our notion of authorship in ancient texts, since in antiquity texts were the universal commons of all those who drew on them. This problem forms the starting point for the research. Imperial Greek literature serves as a fertile ground to re-think anonymised text production. Contrary to the assumptions of romantic genius aesthetics, the project regards authorship as a collaborative cultural practice of the Pre-Modern World. It takes up current developments, such as the popular fanfiction narratives on digital platforms, considering these approaches to canonical texts as diachronic forms of co-authorship.


Institute of Science and Technology Austria (ISTA)

The Institute of Science and Technology Austria (ISTA) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. In the 15 years since the start of its operations, ISTA has grown to over 80 research groups in the life sciences, mathematics, computer science, physics, chemistry, system sciences, and related areas. ISTA has one the highest success rates in ERC grant applications and currently has 34 active ERC grants in diverse research areas (20 in the “Physical Sciences & Engineering” and 14 in the “Life Sciences” domains).
The Institute employs professors on a tenure-track model, post-doctoral researchers, and PhD students.

The Graduate School of ISTA offers fully funded PhD positions to highly qualified candidates with a Bachelor’s or Master’s degree. While dedicated to the principle of curiosity-driven research, ISTA aims to deliver scientific findings to society through technological transfer and science education. The President of the Institute is Martin Hetzer, a renowned molecular biologist, and former Senior Vice President at The Salk Institute for Biological Studies in California, USA.

Read More

Active ERC grants

Physical sciences & engineering:

  • Randomness and structure in combinatorics – Kwan
  • Bridging Scales in Random Materials – Fischer
  • Random matrices beyond Wigner-Dyson-Mehta – Erdoes
  • Spectral rigidity and integrability for billiards and geodesic flows – Kaloshin
  • Cavity Quantum Electro Optics: Microwave photonics with nonclassical states – Fink
  • A quantum hybrid of atoms and milligram-scale pendulums: towards gravitational quantum mechanics – Hosten
  • Non-Ergodic Quantum Matter: Universality, Dynamics and Control – Serbyn
  • Orbital Chern Insulators in van der Waals Moiré Systems – Polshyn
  • Gaining leverage with spin liquids and superconductors – Modic
  • VULCAN: matter, powered from within – Palacci
  • Tribocharge: a multi-scale approach to an enduring problem in physics – Waitukaitis
  • Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines – Saric
  • ab initio PRediction Of MaterIal SynthEsis – Cheng
  • FastML: Efficient and Cost-Effective Distributed Machine Learning – Alistarh
  • Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena – Wojtan
  • The design and evaluation of modern fully dynamic data structures – Henzinger M.
  • Vigilant Algorithmic Monitoring of Software – Henzinger T.
  • Formal Methods for Stochastic Models: Algorithms and Applications – Chatterjee
  • Young galaxies as tracers and agents of cosmic reionization – Matthee
  • Organisation of CLoUdS, and implications for Tropical cyclones and for the Energetics of the tropics, in current and in a waRming climate – Muller

Life Sciences:

  • Design of Nucleic Acid-Templated Ordered Protein Assemblies – Praetorius
  • A molecular atlas of Actin filament IDentities in the cell motility machinery – Schur
  • Synthetic and structural biology of Rab GTPase networks – Loose
  • Structure and mechanism of respiratory chain molecular machines – Sazanov
  • Mechanisms and biological functions of H3K27me3 reprogramming in plant microspores – Feng
  • Design Principles of Branching Morphogenesis – Hannezo
  • Mechanisms of tissue size regulation in spinal cord development – Kicheva
  • 60-Hz light entrainment to unlock mental health conditions – Siegert
  • Action Selection in the Midbrain: Neuromodulation of Visuomotor Senses – Jösch
  • Development and Evolution of Tetrapod Motor Circuits – Sweeney
  • Toward an understanding of the brain interstitial system and the extracellular proteome in health and autism spectrum disorders – Novarino
  • Learning the shape of synaptic plasticity rules for neuronal architectures and function through machine learning – Vogels
  • Understanding the evolution of continuous genomes – Barton
  • Cyclic nucleotides as second messengers in plants – Friml

Politecnico di Torino – Discover multidisciplinary frontier research at an Engineering university: science advancement for the benefit of society

Politecnico di Torino was the first Italian Engineering School, founded in the mid-19th century. Engineers, architects, designers and urban planners have been trained at Politecnico di Torino for over 160 years with rigor, integrity and high-level standards. This long ever-changing history has rated Politecnico among the top European technical universities for education and research in Engineering and Architecture.

Read More
Politecnico di Torino residency program involves ERC researchers in the following research areas:

Computational Electromagnetics (CEM): we investigate the scientific field at the origin of all new modeling and simulation tools to tackle the design challenges of emerging and future technologies in applied electromagnetics- ERC Project 321 From Cubic3 To2 Linear1 Complexity in Computational Electromagnetics.
The Grand Challenge of 321 project is to investigate and exploit a dynamic Fast Direct Solver for Maxwell Problems that would run in a purely linear complexity for an arbitrary number and configuration of degrees of freedom. It will thus solve a scientific problem that the CEM scientific community has been seeking for 20 years.
Host researcher: Francesco Paolo Andriulli

Regenerative Medicine for cardiac tissues: our research will allow direct reprogramming of cardiac cells using in vitro models of human fibrotic heart tissue, followed by in vivo studies – ERC project BIORECAR Direct cell reprogramming therapy in myocardial regeneration through an engineered multifunctional platform integrating biochemical instructive cues.
Through the BIORECAR project, it is expected to get new knowledge on still unexplored regenerative medicine tools that may lead to successful direct reprogramming of human Cardiac fibrotic tissues.
Host Researcher: Valeria Chiono

Nature inspired production of asymmetric materials: symmetry is a key structural feature in natural systems and allows for self-organization and unidirectionality of chemical transformations. We aim to produce materials bearing different functionalities on the two opposite sides – ERC Project JANUS-BI All-liquid phase JANUS BIdimensional materials for functional nano-architectures and assemblies.
The JANUS BI project will deliver fundamentally new abilities to engineer nanomaterials so as to provide “bottom-up” nanoscale-platforms where a tight control over the structural and functional properties is exerted, of major importance for the progress of human ability to mimic natural systems.
Host Researcher: Teresa Gatti

Nanoparticles for innovative therapies to fight cancer: We develop safe and biomimetic nanoparticles, able to travel in the blood stream upon injection and to find their own way to target cells, activated remotely and on-demand against cancer – ERC Project TrojaNanoHorse Hybrid immune-eluding nanocrystals as smart and active theranostic weapons against cancer.
The TrojaNanoHorse project pushes forward the boundaries of the nanomedicine field, proposing innovative tools for cancer treatment which overcome the conventional features of smart drug delivery systems.
Host Researcher: Valentina Cauda

Couple acoustic and aerodynamic flows: We work to model how an acoustic wave interacts with an acoustic absorbing surface in the presence of a flow to design novel noise reduction technologies useful in many fields of application from automotive to aerospace– ERC Project LINING Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce and drag.
The LINING project pushes the boundaries of our current knowledge by explaining the physical reasons behind unexpected results found in measurements by many labs around the world. Such knowledge can improve the current design approach and pave the way towards more complex geometries, i.e. meta-material, for which the impact of the flow is potentially more relevant than in current technologies.
Host Researcher: Francesco Avallone

Innovative diagnosis methods for cancer and viruses: We develop a novel and cutting-edge diagnostic platform to detect and quantify cancer and viral bio-markers in bodily fluids, making simpler, faster and more economical the diagnosis of many diseases – ERC Project ANFIBIO: Amplification-free Identification of Cancer and Viral Biomarkers via Plasmonic Nanoparticles and Liquid Biopsy.
ANFIBIO seeks to implement a breakthrough concept of DNA and RNA identification that takes inspiration from sequencing technologies and leverages direct SERS sensing and machine learning approaches to deliver a sensitive, accurate, and low-cost platform for the detection of biomarkers of clinical relevance.
Host Researcher: Laura Fabris

Physical principles for a better use of sun energy: We will enhance the capacity of solar energy conversion extending the width of wavelengths that are converted to the full spectral range delivered by the Sun – ERC Project PADEIA Plasmon induced hot electron extraction with doped semiconductors for infrared solAr energy.
PAIDEIA project answers fundamental questions in physics and materials processing of heterojunctions and addresses the grand challenge of secure, clean and efficient energy at the same time.
Host Researcher: Francesco Scotognella

Institute of Chemical Research of Catalonia (ICIQ-CERCA)

Our Institute is organized into three research pillars covering a wide range of chemical disciplines: Innovative Catalysis, Renewable Energies and Molecular Medicine. These are carefully designed to address global challenges, including energy, the environment, health, and materials. Aligning our research efforts with these critical areas, we seek to make meaningful contributions that drive positive change and create a sustainable future.

Read More
Innovative Catalysis
Catalysis is the Institute’s largest and most significant research area, making a significant contribution to sustainable chemistry. Its primary goal is to advance processes and products that enhance resource utilization efficiency and minimize waste generation. This field encompasses a broad range of chemical catalysis investigations, including homogeneous, heterogeneous, supramolecular and enantioselective catalysis. It also involves the development of novel ligands and catalytic processes, as well as the design and simulation of catalytic reactors.

Renewable Energies
At ICIQ, several research groups are actively engaged in various endeavours with a common goal of contributing to the development of new energy solutions that offer viable alternatives to fossil fuels. These efforts include hydrogen generation from water through sustainable processes, the advancement of more efficient photovoltaic devices, and the conversion of CO2 into liquid fuels and feedstocks for the chemical industry.

Molecular medicine
In the molecular medicine research area at ICIQ, several research groups are striving to drive innovation and advancements in healthcare. They aim to develop advanced sensor technologies that can revolutionize medical diagnostics and monitoring, identify new therapeutic compounds targeting specific diseases, and study the interactions between chemicals and biological systems to enhance healthcare solutions.

Photovoltaic Technology & Energy Systems Group at imo-imomec

Imo-imomec is a joint research institute of Hasselt University (UHasselt) and imec where engineers, chemists and physicists conduct multidisciplinary materials research. We focus on advanced material systems for a sustainable and healthy society. Our core domains are energy, sustainable materials, sensors & healthcare materials, and quantum technologies. Imec performs world-leading research in nano-electronics and creates groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, and energy. UHasselt is a young university, but its education and research are well-regarded worldwide – with some excellent international ranking positions. UHasselt is ranked 35th out of 605 in the Times Higher Education ranking of the world’s best universities under 50 (years old), and it is ranked among the best 10 higher education institutions in the European Commission’s U-Multirank.

Read More
Imo-imomec’s energy research is part of: (i) EnergyVille, which is an association of the Flemish research centres KU Leuven, VITO, imec and UHasselt in the field of sustainable energy and intelligent energy systems, and (ii) Solliance, which works with and for the industry, both to fulfil short-term needs of industry, and to convey promising lines of mid- and long-term (thin film) PV research. This project will take place in the PV technology & Energy systems group at imo-imomec , which consists of 3 technology development teams: (i) Thin-film PV, (ii) Wafer-based PV, and (iii) Energy system management.

Solar energy is the most widely available energy resource on Earth, and photovoltaic (PV) solar energy is currently cheaper than any power source ever before. In 1839, Edmond Becquerel discovered the operating principle of a PV solar cell, and in 1883, Charles Fritts developed the very first working cell. It was not until 1954 that the first practical silicon solar cell was demonstrated at Bell Labs, and in the last decades the PV industry has undergone remarkable growth due to both efficiency increases and cost reductions. Today, PV solar energy is the new king of global power markets, as is stated by the International Energy Agency (IEA) based on PV expansion being at its fastest pace in two decades. An even faster pace is projected in the coming years, with the very low cost of PV solar energy driving the global demand for renewables. The PV technology & Energy systems group at imo-imomec has been at the forefront of PV research, development and valorization since 1984, and is therefore the ideal host to study the history, rise and future of solar energy for the energy transition.

Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI)

The surfaces of the human body host colonies of microorganisms, known as microbiomes. Along with bacteria which have a positive effect on human health, microbiomes contain potentially life-threatening pathogens. In the past, broad-spectrum antibiotics have often been used to tackle them. Nowadays it is known that this not only promotes resistance to antibiotics – in many cases, it also damages the microbiome as a whole.

CMFI researchers aim to develop new strategies to control microbial mechanisms and fight infections.

Read More
The Cluster of Excellence CMFI brings together researchers from different disciplines such as infection biology, immunology, bioinformatics, pharmaceutical biology, antibiotics research, molecular and medical microbiology, biotechnology, environmental biology, systems biology, chemistry, and medical history and ethics. Their common goal is to elucidate the mechanisms of interaction between beneficial and harmful bacteria and the host in order to develop novel targeted therapeutic and anti-infective treatments.

The CMFI is one of more than 50 Clusters of Excellence funded by German federal and state governments as part of the Excellence Strategy to sustainably strengthen Germany as a center of science, improve its international competitiveness and make cutting-edge research at German universities visible. In addition to the University of Tübingen, the Max Planck Institute for Biology and the University Hospital Tübingen are involved in the CMFI.

Biomedical Science Research Center “Alexander Fleming” (BSRC FLEMING)

The Biomedical Science Research Center “Alexander Fleming” (BSRC FLEMING) was established through the efforts of Amalia Koutsouri-Fleming, a microbiologist and wife of Alexander Fleming, the Nobel Laureate 1945 in Medicine. She had the vision for a Greek Center of Scientific and Technological Excellence, based on meritocracy, excellence and innovation purposed to attract and develop young Greek researchers.
BSRC FLEMING started its operation in 1999 and is nowadays a top-ranked non-profit research organization of 23 group leaders and 130 researchers, with a mission to perform cutting edge basic and translational research in biomedical sciences, provide state-of the-art training and mentorship to scientists and students of all levels, offer high end scientific and technological services, and engage in technology transfer and innovation. The center is located in an area of 128.000 sq.m. in Vari, a region on the Athenian Riviera. The Fleming Museum of Contemporary Science is also housed on the premises of the research center.

Read More
Its main research directions include Immunity & Inflammation, Neuroscience, Cancer Biology, RNA Biology & Epigenetics, Bioinformatics & Computational Biology. Additionally, BSRC FLEMING has recently established its frontier research in Biomolecular Engineering & Synthetic Biology with a European Research Area chair (ERA Chair), Dr. Georgios Skretas. These research directions reflect the work of its group leaders and serve as links between the two FLEMING Institutes: Institute for Bioinnovation (IBI) and Institute for Fundamental Biomedical Research (IFBR). The focus of IFBR is on unravelling the molecular and cellular basis of disease via novel animal models of human pathologies, while IBI’s vision is to advance fundamental research achievements towards innovative translational biotechnologies and drug development.
BSRC FLEMING’s strength and international recognition arises from pioneering research towards understanding the molecular and cellular basis of human diseases, and development and validation of relevant animal models of chronic inflammatory diseases, neurodegenerative disorders, metabolic diseases, cancer and autoimmune syndromes, among others, and the development of new approaches for their diagnosis and treatment, using transdisciplinary approaches and state-of the art facilities and technologies. It is of note that several of its researchers have been included in the list of outstanding research leaders in Europe awarded ERC grants.
The center also coordinates two major Research Infrastructures (RIs) for modeling human diseases and bioinformatics/biocomputing resources, while it participates in personalized medicine, precision oncology and bioimaging RIs.


August Pi i Sunyer Biomedical Research Institute (IDIBAPS)

IDIBAPS is one of the leading biomedical research centers in Spain with an international projection. IDIBAPS is uniquely located in the Campus Clínic in Barcelona, joining efforts with the Faculty of Medicine of the University of Barcelona and the Hospital Clínic of Barcelona to carry out excellent biomedical research and investigate the most common diseases in our society. Our mission is translational research; that is, we look to ensure that the questions that arise at the patient’s bedside find answers in the laboratory and that advances made in the laboratory are translated rapidly to the patient.

Read More
IDIBAPS research is organized into research areas and multidisciplinary programs.

5 Research Areas and 3 transversal groups:
1. Biological aggression and response mechanisms
2. Respiratory, cardiovascular and renal pathobiology and bioengineering
3. Liver, digestive system and metabolism
4. Clinical and experimental neuroscience
5. Oncology and haematology
6. Transversal research groups focusing on primary care, pharmacology and nursing

Multidisciplinary Programs:
1. Transitional cancer research program
2. Lymphoid neoplasms program
3. Synaptic autoimmunity in neurology, psychiatry and cognitive neuroscience program

Among the multiple research groups, we would like to highlight the following research lines, supported by ERC grants, for the FRONTIERS Science Journalism Residency Program:
– Neuronal control of metabolism directed by Marc Claret, Principal Investigator of MITOSENSING project: https://cordis.europa.eu/project/id/725004
– Cortical circuit dynamics directed by Jaime de la Rocha, Principal Investigator of PRIORS project: https://cordis.europa.eu/project/id/683209
– Molecular pathology of lymphoid neoplasms directed by Elías Campo, Principal Investigator of BCLLatlas project: https://cordis.europa.eu/project/id/810287

National Science Platform (NSP) FOTONIKA-LV

Towards frontier research projects in quantum sciences, space sciences and related technologies (targeting EU Framework program, ESA, and National Science Council calls) under the strategic guidance of two ERA Chairs: Dr.Rashid Ganeev and Prof. Bernard Foing accordingly in named disciplines of photonics sciences.